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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests

m Have: Two collections of samples X, Y from unknown distributions
P and Q.
m Goal: do P and @ differ?
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MNIST samples Samples from a GAN
Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NeurIPS 2016 3/75
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.



Training implicit generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

L . |

LSUN bedroom samples P Generated @@, MMD GAN
Using a critic D(P, Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 20185, ~ 4/175

(Arbel. Sutherland. Binkowski. G.. NeurIPS 2018)



Training generative models

Contribute  Searchjobs Dating  Signin  Search ~ UK edition v
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:radio Books Art&design Stage Games Classical

A portrait created by Al just sold for
$432,000. But is it really art?

Animage of Edmond de Belamy, created by a computer, has
just been sold at Christie’s. But no algorithm can capture our
complex human consciousness

< m
1,085 455

A Portrait of Edmond Bellamy at Christie’s in New York. Photograph: Timothy A Clary/AFP/Getty Images
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Testing goodness of fit

B Given: A model P and samples and Q.
m Goal: is P a good fit for Q7

Chicago crime data
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Testing goodness of fit

B Given: A model P and samples and Q.
m Goal: is P a good fit for Q7

Chicago crime data

RN Model is Gaussian mix-
“‘::*" -'.-‘ ture with two compo-
o . nents. Is this a good
& model?
AW
'f: 3 Wi
Tas
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Testing statistical dependence

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com
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Outline

m Measures of distance between distributions...

Difference in feature means
Integral probability metrics (not just a technicality!)

m Statistical testing to compare samples from P and @

m GAN critic design (if time)

Gradient regularisation and data adaptivity
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Differences in distributions
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Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density
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Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
o o o o
L £ 9 9

o
)

0.1F
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
@(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = (p(z), o(z'))

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z — 2'||%)

_901(517) /\
RN RGAVAN
pa(z) |~
—

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 13,75




Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]
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Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]

For positive definite k(z, z’),

(kp,po)r = Ep ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll>
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
= (up, uP) r + (L) Q) — 2 (1P, HO) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>

= (up,ur)r+ (Lo, ko) — 2(kP, LQ) £
= Epk(X, XY+ Egk(Y, Y') — 2Ep ok(X, Y)

(a) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

VR
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>
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[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n—_ > k(dog,, dog;) + n(n— > k(fish,, fish, )
z;éj 1#]
- E > k(dog;, fish;)
LR

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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Integral probability metrics

Are P and @ different?

051

-0.5

Samples from P and Q
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Integral probability metrics

Are P and @ different?

051

-0.5

BRAR

Samples from P and Q

00 ¢ 00000 © 06 -

0.2

0.4

0.6

0.8

19/75



Integral probability metrics

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

What if the function is not well behaved?
Epf(X)—Eqf(Y)

Bounded continuous function

0.5¢

0 0.2 0.4 0.6 0.8
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MMD as an integral probability metric

What if the function is not well behaved?
Epf(X)—Eqf(Y)

Bounded continuous function

0.5¢

0 0.2 0.4 0.6 0.8 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := u?h”% [Epf(X) —Eqf(Y)]

(F' = unit ball in RKHS F)
Functions are linear combinations of features:

N ECHAN
fi —~J
}' = Z fewe(T) = f3 y\/%

p3() A~
N o

f(x) =[],z

IFll% =22, f2 <1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) i= sup [Epf(X) - Eof(Y)]

Prob. density and f

1111
(F' = unit ball in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : : ‘

s

Gauss ]

0.6

m— |_aplace

06 ‘
6 -4 2

Xor
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := e [Epf(X) —Eqf(Y)]
(F = unit ba_ill in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) = {f,Epp(X))r = (f,uP) 5

(always true if kernel is bounded)
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Integral prob. metric vs feature difference

The MMD:
Witness f for Gauss and Laplace densities
0.8

MMD(P, Q; F) : |
— = |_aplace

=sup [Epf(X) — Eqf(Y)] g

fer z
085 -4 2 0 2 4 6

25/75



Integral prob. metric vs feature difference

The MMD:
use

MMD(P, Q; F)

=sup[Epf(X) — Eqf(Y)]
fEF

EPf(X) = </~‘(’P7f>]-'

=sup(f, up — 1Q)
fEF
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup[Epf(X) — Eqf(Y)]
fEF

=sup(f, up — 1o) r
fEF
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Integral prob. metric vs feature difference

The MMD: Q
\ g >
2\ S
MMD(P, Q; F) aé\‘b ¥
= sup [Bpf(X) ~ Eof (¥) f
feF

=sup(f, up — 1o) r
fEF
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Integral prob. metric vs feature difference

The MMD:

Q
\ g )
<92 s
MMD(P, Q; F) Do\‘ v
=sup [Epf(X) - Eqf(V)]
feF f*
= ?161113 (frpp — 1) r
. MP = Q

lwp =l



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup[Epf(X) - Eqgf(Y)]
feF

=sup (f, up — 1Q) ¢
feF

= llup — poll

Function view and feature view equivalent
(kernel case only)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
~———

26/75



Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

Z (zi,v nzk Vis V)

Don’t need explicit feature coefficients f* := [ TS } 27/75



Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

33,75



Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o

35/75



—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

—— 9
Vn x MMD™ =1.2

10

36,75



. —— s 2
Behaviour of MMD when P # @
Draw n = 200 i.i.d samples from P and @

L

aplace with different y-variance.

— 2
= /nx MMD =12

~
T

2
(=2}
T

Prob. of \/n x MMD
N

o
T

w
T

n
T

Number of MMDs: 1

0 05 1 15 2 25
— 2
Vi x MMD

/i x MMD® =1.2

10

37/75



—_— 2
Behaviour of MMD when P # @

Draw n = 200 new samples from P and @

m Laplace with different y-variance.

—2
m/nx MMD =15 10
Number of MMDs: 2 ol
4 : : ‘ : ‘ )
4 e St
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— 2 38/75
Vi x MMD /



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 39/75



—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 39/75



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 39/75



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD(P, Q) p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
[ =rpirical PDF —Q,
e Giaussian fit =
S g
= o
(= .| :
= @ 05
X
% 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 15 2 2.5 3 3.5
—_— 2
Vi x MMD 20/75



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?
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— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D

42/75



—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
o

n x MMD’
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A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—_—P =
0.6} ' —_—P # Q|
a2l
(E: 0.5 J
= ]
X
<
3 03 8
,g' ¢, = 1 — a quantile when P = @
=02 .
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

MMD = ln =) ;k(zﬂzj)
n(nl ) > k()
i
S DIICED




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
K= (4 e ]
Y

[ Pat. H...]

46/75



How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




Application: GAN quality evaluation



Maximising test power: graphical illustration

B Maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,;C:; ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6
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The ARD kernel

01

02

03

, 00i+1

0442
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Troubleshooting for generative adversarial networks

1345|105
5197|548

3017|5419
5130|578

SEICICIENE
01y1118.81/

9185078
4240095

MNIST samples Samples from a GAN

m Power for optimzed ARD
kernel: 1.00 at « = 0.01

m Power for optimized RBF
kernel: 0.57 at o = 0.01

50/75
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Troubleshooting generative adversarial networks

108

[ dataset images
770 GAN samples

-
Jw-
| |

more like dataset —
MMD? = 0. 0001 51/75




Training Generative Adversarial
Networks

52/75



Reminder: GAN setting

=Pt
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Reminder: GAN setting
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Reminder: GAN setting
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What I won’t cover: the generator

Stride 2

Stride 2

Project and reshape

Conv2 CONV 3 64

CONV 4 .
G(2)

Radford, Metz, Chintala, ICLR 2016
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Choices of critic

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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MMD as critic

> A helpful critic witness:
MMD(P, Q) = supjj|| <1 Brf(X) — Eqf(Y).
MMD=1.8

Real
points
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MMD as critic

>C A helpful critic witness:
MMD(P, Q) = sup|s|| <1 Brf(X) — Eqf(Y)
MMD=1.1

® 0@ \ ¥ W

56/75



MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64

Real
points




MMD as critic

-~

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64

56/75



MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li' YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge

57/75



MMD for GAN critic

Can you use MMD as a critic to train GANs?

7107124/

HEFICIFEIR
6 4/723

Need better image features.
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CNN features for an MMD witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

5 - !
P2

A=z, y) = hy T (2)hy (y) A(z,y) = k(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
m Wasserstein GAN Arjovsky et al. k is e.g. an exponentiated quadratic
[ICML 2017] kernel
B WGAN-GP Gulrajani et al. MMD Li et al., [NeurIPS 2017]
[NeurIPS 2017 Cramer Bellemare et al. [2017]

Coulomb Unterthiner et al., [[CLR 2018]
Demystifying MMD GANSs Binkssyrs,
Sutherland, Arbel, G., [[CLR 2018]



Witness function, kernels on deep features

Reminder: witness function,

k(z,vy) is exponentiated quadratic
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Witness function, kernels on deep features

Reminder: witness function,
E(hy(z), hy(y)) with neural network hy and exp. quadratic &

59/75



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

60,75



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

60,75



A simple 2-D example

Samples from target P and model Q)

e target
e model
© L]
° o
° L]
° .
L] L] L] L]
¢ S ole, , ¢
‘ ..:‘ : N .'.o .C
L]
L)
N {. -.. e
¢ ¢« ° oge
[] L o ° o
L]
L ° oe
. ° °
e ® '. .
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(z, y)

MMD Gaussian

S liiiiiiiii %

'FRRZ 22229
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A simple 2-D example
What the kernels 4(z, y) look like

MMD Gaussian

L . ) target
¢ « model
D A S
e ° o o
. : * .0
- - %
o y) o® D \ .’. o
2 . "2
L] ? L] ° L]
e Y [ X
[] 9 . © o O
o
" PS o
- T * . ®
L]
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A simple 2-D example

Witness gradient, maximise MMD to learn hy(z) for k(hy(z), hy(y))

MMDGAN (no GP)

(4 layer, fully connected, RELU, skipthrough 1-4, early stage)

61,75



A simple 2-D example

What the kenels %(hy(z), hy(y)) look like

MMDGAN (no GP)

L] L]
® . L e s 2
« target .
. model » . * . °

(4 layer, fully connected, RELU, skipthrough 1-4, early stage)

61,75



A simple 2-D example




A data-adaptive gradient penalty

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Dougal J. Sutherland
Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit
University College London University College London
michael.n.arbel@gmail.com dougal@gmail.com
Mikotaj Bifikowski Arthur Gretton
Department of Mathematics Gatsby Computational Neuroscience Unit
Imperial College London University College London
mikbinkowski@gmail.com arthur.gretton@gmail.com
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A data-adaptive gradient penalty

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:
SMMD(P,\) =opx MMD

where

d
obp =Nt [ E(hy(@), (@) dP(@)+Y, [ 08iak(hy(2), 1)) dP(a)
1=1
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Simple 2-D example revisited

Samples from target P and model Q)

e target
e model
© L]
° o
° L]
° .
L] L] L] L]
¢ S ole, , ¢
‘ ..:‘ : N .'.o .C
L]
L)
N {. -.. e
¢ ¢« ° oge
[] L o ° o
L]
L ° oe
. ° °
e ® '. .
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P, X)

to learn hy(z) for k(hy(z), hy(y))

SMMDGAN (target)

elgp e

RIS
Attt

(early stage of critic optimisation)
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What the kenels %(hy(z), hy(y)) look like
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Witness gradient, maximise SMMD(P, X)
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Simple 2-D example revisited

What the kenels %(hy(z), hy(y)) look like

SMMDGAN (target)

(late stage of critic optimisation) 63/75



Our empirical observations

Data-adaptive critic loss:

m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) is unhelpful.
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Our empirical observations

Data-adaptive critic loss:

m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) is unhelpful.

Alternate critic and generator training:

m Weaker critics can give better signals to poor (early stage) generators.
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Evaluation and experiments
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Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato', Toshiki Kataoka', Masanori Koyama®, Yuichi Yoshida®
{miyato, katauka]ﬁgreferred.jp

orks, Inc. *Ritsumeikan University *National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikolaj Biikowski®
Department of Mathematics
Imperial College London
mikbinkowskifgmal

om

Dougal J. smmn;w Arhel & Arthur Gretton

rbel,arthur.grett:

SOBOLEV GAN

Youssef Mroueh', ,Chan-Lisng L *, Tom Sercu’*, Anant Raj°* & Yu Cheng'

+ IBM Rescarch A

o Camnegie Mellon U

© Max Planck Institute for Imauigem Systems

+ denotes Equal Contribution

{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu,
tom.sercul@ibm.com, anant.rajltuebingen. mpg. de

BOUNDARY-SEEKING
GENERATIVE ADVERSARIAL NETWORKS
R Devan H

MILA, University of Montréal, IVADO
erroneusdgrall.com

Athul Paul Jacab-
MILA, MSR, University of Waterloo
apjacobledu. uwaterloo.ca

Tong Che
MILA, University of Moatréal
tong.chefunontreal.ca
Kv\mgmm Cho Yoshua Bengio
York Uni MILA, Univessity of Monteéal, CIFAR, IVADO
AR Al Gk Schola yoshua.bengiofumontreal .ca

kyunghyun. chollayu. edu
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Results: celebrity faces 160x 160

KID scores:

m Sobolev GAN:
14

m SN-GAN:
18

m Old MMD
GAN:
13

m SMMD GAN:
6

202 599 face images, re-
sized and cropped to 160
X 160




Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.
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Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.




Summary

m MMD critic gives state-of-the-art performance for GAN training
(FID and )

use convolutional input features
train with new gradient regulariser

m Faster training, simpler critic network

m Reasons for good performance:
Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal
Kernel features do some of the “work”, so simpler hy features possible.
Better gradient/feature regulariser gives better critic

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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https://github.com/mbinkowski/MMD-GAN
https://github.com/MichaelArbel/Scaled-MMD-GAN 
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Questions?
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D(P, Q;9:) = Eqfy,(Y) — Epfy,(X)
= P16,

Mescheder et al. [[CML 2018]
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Optimization: simple example

Gradient descent on generator:

%D(P, Qi) = %Tﬁt@t =
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Optimization: simple example

Gradient ascent on critic:

%D(P, Q;¥t) = 011
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Optimization: simple example

Gradient ascent on critic:

%D(P, Q;¥t) = 011

15}
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Optimization: simple example

Gradient ascent on critic:

%D(P, Q;Yt) =01

5]
PYir1 = P + }\@D(P, Q;Yt) =Yt +A0t1 w37



Optimization: simple example

Gradient ascent on critic:

S (r) = Y12

%D(P, Qi) = 11

0
Yiy1 = P + A@D(P, Qi) =Y + A0y T3/75



Optimization: simple example

Idealised continuous system (infinitely small learning rate)
6] _ | -V4D(P,@;9)
Y Ve D(P, Q; )

Every integral curve (¢(t),8(t)) of the gradient vector field satisfies
P2(¢t) + 6%(t) = c for all t € [0, 00).

Mescheder et al. [[CML 2018, Lemma 2.3] 74/75



Optimization: simple example

Idealised continuous system (infinitely small learning rate)

6] _ | -V4D(P,@;9)

Y VeD(P, Q;9)
Every integral curve (¢(t),0(t)) of the gradient vector field satisfies
P2(¢t) + 6%(t) = c for all t € [0, 00).

A solution: control witness gradient

Mescheder et al. [[CML 2018, Lemma 2.3] 74/75



D(P, Q;9:) = Eqfy,(Y) — Epfy,(X)
= P16,

Mescheder et al. [[CML 2018]
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Convergence issues for WGAN-GP penalty

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]
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Figure from Mescheder et al. [[CML 2018]
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